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Abstract  The precipitation is predicted by using a weighted combination of different convective parameterization 

schemes. The best prediction estimation is obtained by calculating the appropriated weights for the ensemble of 

parameterizations. The weight identification process is a type of inverse problem: parameter estimation. The inverse solution 

is computed by minimizing the functional of square difference between observations (measured precipitation) and 

precipitation calculated by a mathematical model (BRAMS model). The optimization problem is solved by a new 

meta-heuristic: Firefly algorithm with predation (FAP), where the best set for ensemble weights is found. The method is 

applied to the BRAMS (Brazilian developments on the Regional Atmospheric Model System) over South America during 

January 2006. 
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1. Introduction 

In 2005 and 2010, large domains of the Amazon region 

experienced. 

The numerical weather and climate forecasting is a 

significant scientific advance from the century XX. However, 

many aspects are waiting to have a better representation in 

the meteorological computer codes. One of these issues is the 

quantitative precipitation forecasting – in fact, it is a 

permanent challenging. The rainfall prediction is a final 

result of a set of physical processes in the atmosphere 

dynamics. However, such processes are not well represented 

in the numerical models, in particular during summer period 

in the tropical/equatorial zones. Therefore, the precipitation 

process is parameterized, and the approaches differ on 

several aspects. In general, operational weather centres deal 

with two types of atmospheric dynamics models: global and 

regional (limited area) models. Regional models have a finer 

spatial resolution than global atmospheric models, and the 

location and amounts of precipitation should be better 

represented in limited area models. As already mentioned, 

the convection process is not correctly described in the 

models, and errors are verified for the latter process 

corresponding to a correct amount, location and time [1].  
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The convection parameterization is a development to 

express a relation between the intensity of the subgrid-scale 

convective activity and the large-scale variables. In 

particular, the precipitation forecasting depends on the 

assumptions employed for parameterization schemes for 

convection, cloud turbulence, and other features [2]. Even 

with the progress on this modelling, the convection process 

remains unsolved. The cumulus parameterization, for 

instance, is one more difficult question to be addressed into 

numerical prediction. Hence, cumulus parameterization is 

one of the most difficult problems in meteorological models. 

Basically, the parameterization is a relation among 

assumptions to describe a process (how the phenomena start, 

and the iteration between the environment and the 

phenomena) with the associated forecast variables. 

Parameterizations are constitutive frameworks to be applied 

into a mathematical model used to simulate a physical 

process, here, atmospheric dynamics.  

The forecasting fails mainly due to the uncertainties in the 

model, and the uncertainties are everywhere: topography 

representation, type of soil and soil moisture mapping, type 

of soil covering, iteration surface-atmosphere, dynamical 

forcing (ocean circulation, for example), numerical values of 

model parameters, processes under-represented, and 

numerical methods. One way to quantify the uncertainty is to 

employ the ensemble prediction, for computing a confidence 

interval. The ensemble members can be obtained using 

different strategies: with a set of different initial conditions, 

different numerical values for model parameters, or by 
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employing different models [3].  

The application of different physical parameterizations is 

one technique to develop a multi-model ensemble [1, 4]. 

Two ensemble strategies were compared by Stensrud et al. 

[1]: (i) a multi-model ensemble (five different convective 

parameterization schemes) with identical initial conditions, 

(ii) an ensemble with different initial conditions and the 

same model configurations. Better results were obtained 

with strategy-(i) or strategy-(ii) depending on the applied 

conditions [1]. From the results, the model change approach 

is an option as a method to identify the members of 

ensemble.  

The method named Multimodel-Superensemble [5-7] is 

an ensemble-based approach, where the response from 

several models is combined, and a weighting average is 

calculated. Cane and Milelli [8] applied the method to 

predict the precipitation on the Piemonte (Italy) region. They 

used the outputs from the ECMWF (European Centre for 

Medium-Range Weather Forecasts) model and different 

versions from the COSMO (Consortium for Small-scale 

Modeling) model. The least-square minimization was 

employed to estimate the weights for the ensemble average. 

The estimated weights were applied during the forecast time 

integration. The precipitation forecasting was improved.  

Grell and Dévényi [9], for simplicity GD, developed a 

scheme based on an ensemble of models for 

convection/precipitation. Several parameterizations are the 

ensemble members to the GD scheme, where an ensemble 

mean (EN) is computed. One improvement for the GD 

technique is to use a weighted average of precipitation 

forecasts from the several parameterizations [10, 11]. Each 

weight in this average represents a new unknown, 

characterizing an inverse problem for parameter 

identification.  

The GD approach is applied to predict the precipitation 

field over South America using the BRAMS model [12]. The 

ensemble weights are identified by minimizing the square 

difference between combined forecasting from several 

convection parameterizations, applied in the BRAMS model, 

and the observations. The optimization problem is solved 

with the Firefly algorithm (FA) [13]. A new version of the 

FA formulation is employed here: the FA with predation 

(FA-P).  

The next section is a brief description of the BRAMS 

model. Section 3 presents the FA meta-heuristic, and 

Section 4 draws the numerical experiment – showing the 

results. In the last section, final remarks are addressed.  

2. The BRAMS Model 

The BRAMS code [12] is supported and developed by the 

CPTEC-INPE (CPTEC: Center for Weather Prediction and 

Climate Study, INPE: National Institute for Space Research), 

and it is based on the Regional Atmospheric Modeling 

System (RAMS) [23], with new functionalities, 

parameterizations, and a very efficient parallel version – it is 

able to run on massively parallel machines, with gain of 

performance, even considering 10000 processing cores. This 

mesoscale meteorological code can simulate several 

atmospheric processes at many scales. BRAMS is the 

operational on limited area code used by the CPTEC-INPE 

for producing the numerical prediction on South America. 

Our simulations were carried out with BRAMS version 4.3 

(see: http://brams.cptec.inpe.br/), but the CPTEC-INPE 

employs the version 5 for the operational forecasting. In our 

experiments, the horizontal resolution was 25 km, with 38 

levels for the vertical coordinate, where the first level placed 

at 100 m over the surface.  

The BRAMS model includes, among other 

parameterizations, an ensemble version of a deep and 

shallow cumulus scheme based on the mass flux approach 

(GD). The convective parameterization trigger function uses 

the turbulence kinetic energy (TKE) from the Planetary 

Boundary Layer (PBL) parameterization. The model can run 

with five popular closure parameterizations: moisture 

convergence (MC: Kuo, 1974) [25], low-level Omega (LO: 

Frank-Cohen, 1987) [26], Kain-Fritsch (KF) [27], 

Arakawa-Schubert (AS) [28], and Grell (GR) [29]. Of course, 

the user can select only one closure option, choosing among 

the five available options. However, these five 

parameterizations can be combined to estimate the 

precipitation. The convective parameterization employed 

was the GD approach, where the weighted ensemble was 

constituted by a GR, LO, MC, KF, and AS schemes. 

The BRAMS model was run with 5 parameterization 

schemes separately, obtaining 5 different simulations. Each 

simulation is a member of the forward problem (BRAMS 

model). The final predicted precipitation is the weighted 

ensemble following the GD approach. The best estimation 

for the weights used to estimate the precipitation filed is 

obtained by an inverse analysis, described in the next 

Section. 

3. Precipitation Field: Inverse Analysis 

The precipitation field estimation is computed using the 

Grell and Devényi multi-model ensemble approach [9], In 

this technique, the net effect from the feed-back cycle 

(environment-cloud) is obtained from statistical method to 

compute the optimal values to the set of parameters to 

express the precipitation in the model. The GD 

parameterization here is applied using five different closure 

precipitation schemes (the ensemble members) together.  

In the procedure of the DG scheme, some parameters are 

selected (radiation, surface flux, and turbulent diffusion 

fluxes in the Planetary Boundary Layer – PBL) to calculate 

the total forcing term for all grid points, and applied to each 

precipitation parameterization. Total forcing represents the 

budget from the sub-grid scale forcing (radiation, surface 

flux, and turbulent flow in the PBL) added to the large scale 

terms (advection on the grid scale). Each parameterization 

has its threshold for starting the precipitation process. During 
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the latter process, the mass flux and the precipitation are 

calculated according to parameterization from the ensemble 

members. These five precipitation predictions are combined 

to have a numerical forecasting for precipitation and the 

atmospheric ratios for the heat and moisture fluxes. For the 

current BRAMS version, there are some options to be 

defined by the user: 

1. Mass flux for a given ensemble member-i: (mb)i, 

2. Ensemble average (ENS): 

 𝒎𝒃 = (𝟏 𝑵 )  (𝒎𝒃)𝒊
𝑵
𝒊=𝟏  .           (3) 

The identification of weight values for a linear 

combination of the five different parameterizations is 

formulated as an optimization problem. The smoothest 

precipitation field is found by adding to the objective 

function a regularization operator with the help of a 

Lagrange multiplier:  

𝐽 𝑊 =   𝑃0 − 𝑤𝑖 𝑃𝑊
Mod  

𝑖
 

2
𝑁
𝑖=1 + 𝜂Λ[𝑃𝑊

Mod ]    (4) 

where the vector W = [w1 w2 … wN]T represents the 

unknown weights with N = 5,  𝑃𝑊
𝑀𝑜𝑑  𝑖  is the simulated 

precipitation according the i-th parameterization, [.] is the 

regularization operator, and  is the regularization 

parameter (Lagrange multiplier). The mass flux is also 

computed from a weighted linear combination with the 

mass flux associated at each parameterization. Hence, the 

equation for the mass flux is expressed by 

𝑚𝑠 = 𝑤𝐴𝑆𝑚𝐴𝑆 + 𝑤𝐺𝑅𝑚𝐺𝑅 + 𝑤𝐾𝐹𝑚𝐾𝐹 + 𝑤𝐿𝑂𝑚𝐿𝑂  

+𝑤𝑀𝐶𝑚𝑀𝐶                             (4) 

here mS is the mass flux on the basis of the cloud, mk and wk 

are the mass flux and the weight associated to each 

parameterization, respectively, with k = AS, GR, KF, LO, 

MC.  

4. Firefly Algorithm with Predation 

The Firefly Algorithm (FA) belongs to the class of 

meta-heuristic methods to compute a solution for an 

optimization problem. A heuristic 1  is a procedure for 

computing a solution under a finite number of steps, where 

a proof of convergence for an optimal (or global) solution is 

not usually described. The prefix meta means after, 

indicating an upper level of discovering. The expression 

meta-heuristic was introduced by Glover to denote a general 

searching strategy [14], and it is not specific for a certain 

problem. Such strategies use a mechanism to avoid falling 

into a local minima or maximum.  

Xin-She Yang has developed the FA [13] based on the 

bioluminescence process, a marvel characteristic of fireflies. 

Preliminary studies with this methodology have produced 

satisfactory results on important applications [10, 11, 13, 

15]. FA has many similarities with other meta-heuristics, 

such as Particle Swarm Optimization (PSO) [16] – see 

                                                             
1
 Heuristic: a Greek word meaning finding, discovery. 

Artificial Bee Colony optimization (ABC), information 

available in the webpage: http://mf.erciyes.edu.tr/abc/. 

Some FA advantages are the simplicity of its 

implementation [17–19], and the efficiency faced on other 

algorithms, for instance Genetic Algorithms [20] and 

Simulated Annealing [21], as expressed by Luz [22].  

There is no full understanding of the function of the 

flashing lights of fireflies [13]. However, the experts have 

pointed out at least two important issues associated with the 

flashes: (a) attracting mating partners, and (b) attracting 

potential prey. For the FA implementation, Yang [13] has 

considered: (i) fireflies attracts each other; (ii) the 

attractiveness is proportional to their brightness, and both 

decrease as their distance increases – if there is no brighter 

firefly, it will move randomly; (iii) the brightness of a 

firefly is affected or determined by the landscape of the 

objective function. The attractiveness is determined by the 

brightness, for practical issue it is associated with the 

objective function. 

The light intensity variation and the attractiveness 

formulation are two important aspects to the FA. The 

attractiveness is determined by the brightness, where the 

latter is associated with the objective function. The light 

intensity is exponentially decreasing with the distance. The 

firefly position represents a candidate solution. The new 

position (m+1) of a firefly (xi) is computed as following 

(there is a firefly population under consideration): 

𝑥𝑖
𝑚+1 = 𝑥𝑖

𝑚 + 𝛽0𝑒
−𝛾𝑟𝑖𝑗

2

 𝑥𝑖
𝑚 − 𝑥𝑗

𝑚 + 𝛼(𝑟𝑎𝑛𝑑 − 1/2) (1) 

where m denotes the interaction step, the parameter  is the 

degree of influence for the stochastic forcing, and rand is a 

random number with uniform distribution on [0, 1]. The 

second term in RHS in Eq. (1) is the attractiveness, 

representing the decay of light intensity seen by other 

fireflies, with 0 the attractiveness at r = 0, and  represents 

the absorption light coefficient for the medium. Parameters , 

0, and  are free ones to the algorithm. The distance between 

two fireflies is calculated in a standard way: 

𝑟𝑖𝑗 ≡  𝑥𝑖 − 𝑥𝑗  =   (𝑥𝑘 ,𝑖 − 𝑥𝑘 ,𝑗 )2
𝑘

𝑖, 𝑗 = 1,2, … , 𝑁   and   𝑘 = 1,2 . . , 𝑁𝑝

 ,         (2) 

with xi,k being the k-th component of the vector xi – the i-th 

firefly, a vector containing the parameters to be identified. 

The set {𝒙𝒊}𝒊=𝟏
𝑵  is the firefly population. 

4.1. Predation Operator 

A new predation operator was developed to the FA. The 

idea is to emulate the natural world, where predation action 

is present in the nature. Predators, in general, seek easier prey, 

that is, the youngest, slow, and elements with diseases. In 

analogy with the natural world, the solutions in the 

population (firefly) further away from the optimality 

condition are eliminated, during the predation cycle. The 

resulting population is rebuilt with new elements, randomly 

generated, preserving the best elements from the earlier 

population. The new version of the firefly algorithm with 
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predation is shown in Figure 1. 

 

Define the cost function: J(xi), with xi = [x1, x2, …, xd]
T 

Define parameters: , 0, , GMax, mpred , tpred 

Generate an initial firefly population: xi
 (i=1, 2, …, Nf) 

For t = 1 up to GMax 

    If tpred = .true. 

        For i = (mpred + 1) up to Nf 

           Generation of new firefly 

        End-For 

    End-If 

    Compute light intensity for xi: proportional J(xi) 

    For i = 1 up to Nf 

       Compute the attractiveness: 𝛽 = 𝛽0𝑒
−𝛾𝑟𝑖𝑗

2

 

       Move firefly-i for the position of the brightest one  

    End-For 

End-For 

End 

Figure 1.  Pseudo-code: FA with predation, where m = # fireflies, tpred = 

predation cycle, Nf - mpred = number of fireflies to be eliminated 

5. Results for Precipitation Retrieval  

BRAMS executions are carried out with the initial and 

boundary conditions from the analysis of the general 

circulation model (MCGA) from the CPTEC-INPE. The 

simulation is performed with resolution T126L28, where 

T126 represents the spherical harmonic expansion with the 

rhomboidal truncated with 126 terms, and L28 represents the 

28 vertical levels in the MCGA/CPTEC model.  

 

Figure 2.  Accumulated precipitation (mm) for 24 h by BRAMS using GD 

approach (arithmetic mean) at the day 21/February/2004 

 

Figure 3.  Accumulated precipitation (mm) for 24 h by TRMM satellite 

data at the day 21/February/2004 

The experiment is designed to simulate one day of intense 

precipitation on the South America region, associated to the 

South Atlantic Convergence Zone (SACZ, or ZCAS for the 

acronym in Portuguese: Zona de Convergência do Atlântico 

Sul), during 21 up to 24/February/2004. Figure 2 shows the 

BRAMS simulation with GD scheme, but only a simple 

arithmetic mean was considered (all parameterization has the 

same relevance).  

The evaluation of the methodology using the FA with 

predation is done with synthetic observation, following the 

same numerical inverse analysis described by Souza et al. 

[10]. Synthetic precipitations were obtained from combining 

of 5 BRAMS simulations for each parameterization. Table 1 

shows the indexed weight for each cumulus parameterization. 

From such analysis, the results indicated that 

parameterizations AS, GR, and KF had a better agreement 

with the precipitation field measured by the TRMM data at 

21-February-2004. Therefore, these parameterizations will 

be represented by heavier weights having a greater 

contribution for the ensemble. 

Table 1.  Weights for the synthetic precipitation filed 

Parameterization weight 

WAS 0.25 

WGR 0.35 

WKF 0.20 

WMC 0.15 

WLO 0.05 

Summation 1.00 
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The resulting precipitation field is given by weighted 

combination:  

𝑃𝑠 = 𝑤𝐴𝑆𝑃𝐴𝑆 + 𝑤𝐺𝑅𝑃𝐺𝑅 + 𝑤𝐾𝐹𝑃𝐾𝐹 + 𝑤𝐿𝑂𝑃𝐿𝑂  

+𝑤𝑀𝐶𝑚𝑀𝐶                            (5) 

where the precipitation fields Pk are computed from the 

parameterizations codified in the BRAMS. Observational 

data contains noise. For a better representation of the 

measured (precipitation) data, the inversion deals with noisy 

precipitation field: 

𝑃𝑂 = 𝑃𝑆 1 + 𝜎𝜉                  (6) 

where σ=0.02 is the level of the noise (2%), and  is a 

random value associated to a Gaussian distribution.  

Therefore, the synthetic precipitation field is given by Eq. 

(6), and the weight identification is performed with the 

inverse analysis detailed in Sections 3 and 4. With the use of 

FA with predation, the regularization was not necessary ( = 

0). The inverse solutions were obtained with 40 fireflies in 

the population, and other parameters for the FA were:  = 0.2, 

0 = 1, and  = 1.  

Table 2 shows the average results () obtained using 25 

realizations for regular FA and for FA with predation (FAp). 

It is clear that only for the weight to the GR parameterization 

a better estimated weight was found. Figure 4a depicts the 

convergence for the FA with predation, and it is much faster 

than standard FA (Fig. 4b). Figure 5 displays the 

precipitation field as computed by the BRAMS model, with 

exact weights adding 2% of level of noise (Fig. 5a), and the 

precipitation calculated with the weights estimated by FA 

with predation. 

Table 2.  Estimated weights using the synthetic precipitation filed 

Parameterization Exact -FA -FAp 

WAS 0.25 0.2399 0.2402 

WGR 0.35 0.3533 0.3423 

WKF 0.20 0.2051 0.2007 

WMC 0.15 0.1939 0.1561 

WLO 0.05 0.0619 0.0506 

 

 

(a)                                                                     (b) 

Figure 4.  Convergence for the FA: (a) with predation operator, (b) regular FA 

 

(a)                                                                 (b) 

Figure 5.  Precipitation field: (a) from the BRAMS with 2% of noise, (b) reconstruction with weights estimated by FA with predation 
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6. Final Remarks 

This paper addresses the estimation of the precipitation 

field applying the GD’s approach with several 

parameterizations. The goal is to obtain a better 

representation for the predicted precipitation employing a 

weighted linear combination from the parameterizations, 

where the best combination is found through an inverse 

analysis. The inverse problem is formulated as an 

otimization problem, where the objetive function is given by 

the square difference between measurements and the 

precipitation field computed from a mathematical model. 

The optimal inverse solution was determined by using a new 

version of Firefly Algorithm (FA): the FA with predation, 

developed to be a general procedure to extract the bad 

elements in the population, introducing new fireflies 

(candidate solutions). This enhanced diversity is designed to 

search better inverse solutions. 

Synthetic observations with noise were employed to 

evaluate the methodology. Indeed, the data from the satellite 

TRMM data presents errors on space and time over the South 

America [32]. The FA with predation produced better results 

than the standard FA. In addition to find better numerical 

values for the estimated weights, a faster convergence was 

noted with FA with predation.  

Other schemes to represent the precipitation, such as super 

parameterization approach [30, 31], are out of our purposes, 

and such formulations were not discussed here.  

The focus is to have a better forecasting to the most 

difficult meteorological variable to be predicted: rainfall, due 

to its variability on space and time. The tropical zone has 

intense convection activity, in particular on the North part of 

the Brazil, on the Amazon region. This is our main 

motivation to look for developing new methodologies. 

Finally, similar to other meta-heuristics, FA – including 

FA with predation – has many free parameters. Santos et al. 

[33] have done a study to determine the best choice for the 

meta-heuristics parameters. This is our recommendation 

mainly for implementation of the technique for the 

operational prediction centers. 
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